Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
1.
Emerg Microbes Infect ; 12(1): e2164219, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: covidwho-2288032

RESUMEN

ABSTRACTThe coronavirus disease 2019 (COVID-19) has caused enormous health risks and global economic disruption. This disease is caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). The SARS-CoV-2 nucleocapsid protein is a structural protein involved in viral replication and assembly. There is accumulating evidence indicating that the nucleocapsid protein is multi-functional, playing a key role in the pathogenesis of COVID-19 and antiviral immunity against SARS-CoV-2. Here, we summarize its potential application in the prevention of COVID-19, which is based on its role in inflammation, cell death, antiviral innate immunity, and antiviral adaptive immunity.


Asunto(s)
COVID-19 , Humanos , SARS-CoV-2 , Antivirales/uso terapéutico , Proteínas de la Nucleocápside , Inmunidad Innata , Desarrollo de Vacunas
2.
Emerg Microbes Infect ; 12(1): 2195019, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: covidwho-2286187

RESUMEN

The persistent pandemic of coronavirus disease in 2019 (COVID-19) caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) currently poses a major infectious threat to public health around the world. COVID-19 is an infectious disease characterized by strong induction of inflammatory cytokines, progressive lung inflammation, and potential multiple organs dysfunction. SARS-CoV-2 infection is closely related to the innate immune system and adaptive immune system. Dendritic cells (DCs), as a "bridge" connecting innate immunity and adaptive immunity, play many important roles in viral diseases. In this review, we will pay special attention to the possible mechanism of dendritic cells in human viral transmission and clinical progression of diseases, as well as the reduction and dysfunction of DCs in severe SARS-CoV-2 infection, so as to understand the mechanism and immunological characteristics of SARS-CoV-2 infection.


Asunto(s)
COVID-19 , Humanos , SARS-CoV-2 , Citocinas , Inmunidad Innata , Células Dendríticas
3.
Front Immunol ; 13: 988536, 2022.
Artículo en Inglés | MEDLINE | ID: covidwho-2039681

RESUMEN

B cells secrete antibodies and mediate the humoral immune response, making them extremely important in protective immunity against SARS-CoV-2, which caused the coronavirus disease 2019 (COVID-19) pandemic. In this review, we summarize the positive function and pathological response of B cells in SARS-CoV-2 infection and re-infection. Then, we structure the immunity responses that B cells mediated in peripheral tissues. Furthermore, we discuss the role of B cells during vaccination including the effectiveness of antibodies and memory B cells, viral evolution mechanisms, and future vaccine development. This review might help medical workers and researchers to have a better understanding of the interaction between B cells and SARS-CoV-2 and broaden their vision for future investigations.


Asunto(s)
COVID-19 , Vacunas Virales , COVID-19/prevención & control , Humanos , Recuento de Linfocitos , SARS-CoV-2 , Vacunación
4.
Signal Transduct Target Ther ; 6(1): 345, 2021 09 22.
Artículo en Inglés | MEDLINE | ID: covidwho-1434094

RESUMEN

The SARS-CoV-2 infection causes severe immune disruption. However, it is unclear if disrupted immune regulation still exists and pertains in recovered COVID-19 patients. In our study, we have characterized the immune phenotype of B cells from 15 recovered COVID-19 patients, and found that healthy controls and recovered patients had similar B-cell populations before and after BCR stimulation, but the frequencies of PBC in patients were significantly increased when compared to healthy controls before stimulation. However, the percentage of unswitched memory B cells was decreased in recovered patients but not changed in healthy controls upon BCR stimulation. Interestingly, we found that CD19 expression was significantly reduced in almost all the B-cell subsets in recovered patients. Moreover, the BCR signaling and early B-cell response were disrupted upon BCR stimulation. Mechanistically, we found that the reduced CD19 expression was caused by the dysregulation of cell metabolism. In conclusion, we found that SARS-CoV-2 infection causes immunodeficiency in recovered patients by downregulating CD19 expression in B cells via enhancing B-cell metabolism, which may provide a new intervention target to cure COVID-19.


Asunto(s)
Antígenos CD19/inmunología , Linfocitos B/inmunología , COVID-19/inmunología , Regulación hacia Abajo/inmunología , Síndromes de Inmunodeficiencia/inmunología , SARS-CoV-2/inmunología , Animales , COVID-19/complicaciones , Chlorocebus aethiops , Femenino , Humanos , Síndromes de Inmunodeficiencia/etiología , Síndromes de Inmunodeficiencia/virología , Memoria Inmunológica , Masculino , Ratones , Ratones Transgénicos , Receptores de Antígenos de Linfocitos B/inmunología , Células Vero
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA